Latest Results Gauss Centre for Supercomputing e.V.

LATEST RESEARCH RESULTS

Find out about the latest simulation projects run on the GCS supercomputers. For a complete overview of research projects, sorted by scientific fields, please choose from the list in the right column.

Environment and Energy

Principal Investigator: Carsten Eden, Institut für Meereskunde, Universität Hamburg

HPC Platform used: JUQUEEN of JSC

Local Project ID: chhh28

The Atlantic Meridional Overturning Circulation transports warm tropical surface water towards northern Europe and returns cold water at depth to the world’s ocean. At the same time it plays a significant role in the global carbon cycle through the ocean’s ability to dissolve carbon dioxide. This overturning is thus of great climatic importance, but a complete picture of its driving forces has not yet emerged due to several observational and theoretical challenges. Using realistic coarse and high resolution ocean models, scientists investigated the ocean response to changes in wind stress and the ability of meso-scale eddy parameterisations to simulate that response.

Computational and Scientific Engineering

Principal Investigator: Andrea Beck(1), Claus-Dieter Munz(1), Christian Rohde(2), (1) Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, (2) Institute of Applied Analysis and Numerical Simulation, University of Stuttgart

HPC Platform used: Hazel Hen of HLRS

Local Project ID: SEAL

In order to quantify the uncertainty due to stochastic input in computer fluid dynamic simulations, researchers from the Institute of Aerodynamics and Gas Dynamics developed an Uncertainty Quantification framework and applied it to direct noise computations of aeroacoustic cavity flows. Simulations have been performed with the discontinuous Galerkin spectral element method on HPC system Hazel Hen at the High Performance Computing Center Stuttgart (HLRS). The aim of this investigation is to gain insight into the sensitivity of uncertain input with respect to the acoustic results and to get a reliable comparison between numerical and experimental results.

Computational and Scientific Engineering

Principal Investigator: Jordan A. Denev, Steinbuch Centre for Computing, Karlsruhe Institute of Technology

HPC Platform used: JUWELS of JSC

Local Project ID: chka20

The simulation of turbulent, partially premixed flames constitutes a challenge due to the complex interplay of the mixing process of fuel and oxidizer, chemical reactions and turbulent flow. Therefore, a detailed numerical simulation of an experimentally investigated flame of laboratory scale has been performed, which allows to study these fundamental interactions in great detail. The results have been compiled into a database which aids the improvement of future combustion simulations. The simulation has been performed with an in-house solver based on OpenFOAM, which includes several performance optimizations to maximize the hardware utilization on supercomputers.

Computational and Scientific Engineering

Principal Investigator: Wolfgang Polifke, Department of Mechanical Engineering, Technische Universität München

HPC Platform used: SuperMUC, Phase I and II

Local Project ID: pr94yu

Combustion noise is an undesirable, but unavoidable by-product of turbulent combustion in, e.g., stationary gas turbines or aeronautical engines. This project combines Large Eddy Simulation (LES) of turbulent, reacting flow with advanced System Identification (SI) – a form of supervised machine learning –  to infer reduced-order models of combustion noise. Models for the source of noise on the one hand, and the flame dynamic response to acoustic perturbations on the other, are estimated to make possible the flexible and computationally efficient prediction of combustion noise across a wide variety of combustor configurations.

Environment and Energy

Principal Investigator: Daniel Told, Max Planck Institute for Plasma Physics, Garching (Germany)

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr27fe

In nuclear fusion experiments, researchers routinely heat hot gases up to temperatures of 100 million degrees in order to create the conditions needed for energy-producing fusion reactions. Turbulence is one of the main obstacles on the way to sustaining these conditions reliably. A particular challenge is found in the plasma edge, where turbulence is suppressed by a self-organized transport barrier. Researchers from the Max-Planck Institute for Plasma Physics have made important progress to understanding the turbulence in this region, leveraging resources provided by the Gauss Centre for Supercomputing.

Computational and Scientific Engineering

Principal Investigator: Oriol Lehmkuhl, Barcelona Supercomputing Center

HPC Platform used: SuperMUC of LRZ

Local Project ID: pn69fa

New wind harnessing generators that gather energy through a phenomenon known as vortex-induced vibrations could represent a new frontier for renewable energy. Researchers of the Barcelona Supercomputing Centre have been using high-performance computing system SuperMUC of the Leibniz Supercoputing Centre to help advance this technology.

Computational and Scientific Engineering

Principal Investigator: Jörg Schumacher, Institute of Thermodynamics and Fluid Mechanics, TU Ilmenau (Germany)

HPC Platform used: JUWELS of JSC

Local Project ID: chil12

Recent direct numerical simulations in closed slender Rayleigh-Bénard convection cells advanced to Rayleigh numbers of Ra = 1015 which were never obtained before and reveal a classical turbulent transport law for the heat transfer from the bottom to the top of the cell which is based on the concept of marginally stable boundary layers. Our simulations were able to resolve the complex dynamics inside the thin boundary layers at the top and bottom plates of the convection cell and to determine a steady increase of the turbulent fluctuations without an abrupt transition near the wall for a range of 8 orders of magnitude in Rayleigh number.

Elementary Particle Physics

Principal Investigator: Gerrit Schierholz, Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

HPC Platform used: JUQUEEN and JUWELS of JSC

Local Project ID: chde07

Understanding the internal structure of the nucleon is an active field of research with important phenomenological implications in high-energy, nuclear and astroparticle physics. Nucleon structure functions and their derivatives, parton distribution functions (PDFs) and generalized parton distribution functions (GPDs), teach us how the nucleon is built from quarks and gluons, and how QCD works. Beyond that, the cross section for hadron production at the LHC relies upon a precise knowledge of PDFs.

Materials Sciences and Chemistry

Principal Investigator: Christoph Pflaum, Department of Computer Science, University of Erlangen-Nürnberg (Germany)

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr87fe

Within this project, the goal is to study and develop novel approaches to boost the performance of thin film solar cells. For this, 3D optical simulation of the photovoltaic devices is performed by discretizing Maxwell’s equations. A sophisticated light management is important to construct thin-film solar cells with optimal efficiency. The light management is based on suitable nano structures of the different layers and materials with optimized optical properties. The design, development and test of new solar cell prototypes with respect to an optimal light management are time consuming processes. For this reason, suitable models and simulation techniques are required for the analysis of optical properties within thin-film solar cells.

Computational and Scientific Engineering

Principal Investigator: Theresa Trummler, Steffen Schmidt, Chair of Aerodynamics and Fluid Mechanics, Technische Universität München

HPC Platform used: SuperMUC, Phase I and II

Local Project ID: pr86ta

Recent developments in direct injection systems aim at increasing the rail pressures to more than 3000 bar for Diesel and 1000 bar for gasoline, to enhance liquid break-up and mixing which in turn improves combustion and reduces emissions. Higher flow accelerations, however, imply thermo-hydrodynamic effects, e.g. cavitation, which occurs when the pressure locally drops below saturation conditions and the liquid vaporizes. The subsequent collapse of such vapor structures causes the emission of strong shock-waves leading to material erosion. But cavitation can also be beneficial by promoting primary jet break-up, thus the ability to predict cavitation and cavitation erosion during the early stages of design of fuel injectors is desirable.

Life Sciences

Principal Investigator: Michal H. Kolář, Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry

HPC Platform used: Hazel Hen of HLRS

Local Project ID: GCS-prot

The proteasome is a large biomolecular complex responsible for protein degradation. Recent experimental data revealed that there is an allosteric communication between a core and regulatory parts of the proteasome. In the project, researchers have used atomistic simulations to study molecular details of the allosteric signal – in their study triggered by a covalent inhibitor. While the inhibitor causes only subtle structural changes, the proteasome-wide fluctuation changes may explain the self-regulation of the biomolecular machine.

Computational and Scientific Engineering

Principal Investigator: Frank Holzäpfel, German Aerospace Center (DLR), Institute of Atmospheric Physics

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr63zi

Aircraft wake vortices pose a potential threat to following aircraft. Highly resolving numerical simulations provide valuable in-sights in the physics of wake vortex behaviour during different flight phases and under various environmental conditions. Hybrid simulation techniques introduce the flowfield around detailed aircraft geometries into an atmospheric environment that controls the vortical aircraft wake until its decay. The vision of virtual flight in a realistic environment is addressed by the two-way coupling of two separate flow solvers. To mitigate the risk of wake encounters and thereby to improve runway capacity, so-called plate lines have been developed and tested at Vienna airport.

Elementary Particle Physics

Principal Investigator: Owe Philipsen, Institute for Theoretical Physics, Goethe-Universität Frankfurt

HPC Platform used: JUQUEEN of JSC

Local Project ID: hkf8

Using HPC system resources available at the Jülich Supercomputing Centre, scientists of the Institute for Theoretical Physics of the Goethe-Universität in Frankfurt/Germany are performing extensive simulations to theoretically predict the properties of the phase transition from nuclear matter to a quark gluon plasma state.

Computational and Scientific Engineering

Principal Investigator: Andrea Beck, Claus-Dieter Munz, Institute of Aerodynamics and Gasdynamics, University of Stuttgart

HPC Platform used: Hazel Hen of HLRS

Local Project ID: HPCDG

In order to analyse the complex flow in rotating turbomachinery components, researchers from the Institute for Aerodynamics and Gas Dynamics performed high fidelity, large-scale turbulent flow computations of stator-rotor interactions using the discontinuous Galerkin spectral element method on the HPC system Hazel Hen at the High Performance Computing Center Stuttgart (HLRS). The aim of this investigation is to gain insight into the intricate time-dependent behaviour of these flows and to inform future design improvements.

Materials Sciences and Chemistry

Principal Investigator: Ralf Tonner, Computational Materials Chemistry, Philipps-Universität Marburg

HPC Platform used: Hazel Hen of HLRS

Local Project ID: GaPSi

By applying approaches based on computational chemistry, researchers at the University of Marburg are addressing the challenge of designing functional materials in a novel way. Using computing resources at the High-Performance Computing Center Stuttgart, the scientists under leadership of Dr. Ralf Tonner model phenomena that happen at the atomic and subatomic scale to understand how factors such as molecular structure, electronic properties, chemical bonding, and interactions among atoms affect a material's behaviour.

Materials Sciences and Chemistry

Principal Investigator: Eugene A. Kotomin, Department of Physical Chemistry of Solids, Max-Planck Institute for Solid State Research, Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: DEFTD

Project DEFTD is focused on large scale computer simulations of the atomic, electronic and magnetic properties of novel materials for energy applications, first of all, fuel cells transforming chemical energy into electricity, and batteries. Understanding of a role of dopants and defects is a key for prediction of improvement of device performance which is validated later on experimentally. Addressing realistic operational conditions is achieved via combination with ab initio thermodynamics. The state of the art first principles calculations of large and low symmetry are very time consuming and need use of supercomputer technologies as provided at HLRS in Stuttgart.

Elementary Particle Physics

Principal Investigator: Chik Him Wong, University of Wuppertal (Germany)

HPC Platform used: JUWELS and JUQUEEN of JSC

Local Project ID: chwu33

In the search of new physics, some proposed models fall into the category of nearly conformal Strongly Coupled Gauge Theories (SCGTs). Such theories are identified by the almost existence of non-trivial zero (pseudo infrared fixed point) in their beta functions. In this project, the Lattice Higgs Collaboration quantitatively investigates the beta function of nearly conformal SCGTs and observes how the beta function depends on the number of fermion flavors and representations. This provides insight of how SCGTs approach near conformality, which is crucial in the identification of models suitable for the development of new physics.

Computational and Scientific Engineering

Principal Investigator: Thomas Indinger and Lu Miao, Chair of Aerodynamics and Fluid Mechanics, Technical University of Munich

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr42re

With constantly growing fuel prices and toughening of environmental legislation, the vehicle industry is struggling to reduce fuel consumption and decrease emission levels for the new and existing vehicles. One way to achieve this goal is to improve aerodynamic performance by decreasing aerodynamic resistance. Leveraging HPC resources, researchers of the Technical University of Munich conducted a wide range of studies with the aim to improve modeling techniques, develop a profound understanding for flow phenomena, and optimize vehicle shapes.

Materials Sciences and Chemistry

Principal Investigator: Jens Harting, HI-ERN, Forschungszentrum Jülich GmbH (Germany)

HPC Platform used: JUWELS of JSC

Local Project ID: chfz05

This group from the Helmholtz-Institute Erlangen-Nürnberg performed simulations, both on a coarse-grained and a molecular level of detail, elucidating how so-called antagonistic salts, consisting of a large anion and a small cation, trigger the spontaneous formation of highly regular, nanometer sized structures in water/oil mixtures. Due to their size difference the small cations accumulate in the water phase while the large anions go to the oil phase. The resulting electrostatic interactions between the phases can lead to long-range ordering.

Materials Sciences and Chemistry

Principal Investigator: Maddalena D'Amore, Department of Chemistry, University of Turin

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr27si

Ziegler-Natta catalysts are important for industry, but determining exactly how they work is difficult due to their complex nature which involves a number of different active compounds on nano-sized structures. Researchersof the University of Turin led by Dr. Maddalena D’Amore have been using Density Functional Theory (DFT) to try to find out more about these types of systems.